Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123156

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Canais Iônicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
2.
Front Biosci (Landmark Ed) ; 28(9): 194, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37796707

RESUMO

The endothelium, an essential component of the vascular system, plays a critical role in the inflammatory response. Under pro-inflammatory stimuli, endothelial cells undergo activation and dysfunction, leading to the release of inflammatory mediators and upregulation of cell adhesion molecules. These changes facilitate the adhesion, rolling, and transmigration of leukocytes into the subendothelial space. Emerging evidence suggests that epigenetic mechanisms, including nucleic acid methylation, post-translational histone modifications, and non-coding RNA, contribute significantly to the regulation of vascular inflammation and expression of cell adhesion molecules. Understanding the epigenetic molecular signatures that govern these processes may provide new insights into the development of therapeutic strategies to combat vascular inflammation and associated diseases. This review aims to summarize the current knowledge on the epigenetic mechanisms involved in modulating the intricate processes underlying vascular inflammation, with a specific focus on the expression of endothelial adhesion molecules and endothelium-leukocyte adhesion.


Assuntos
Células Endoteliais , Molécula 1 de Adesão de Célula Vascular , Humanos , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Endotélio/metabolismo , Leucócitos , Epigênese Genética , Inflamação/genética , Inflamação/metabolismo , Endotélio Vascular
3.
Front Physiol ; 14: 1186475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670771

RESUMO

In teleosts, two PepT1-type (Slc15a1) transporters, i.e., PepT1a and PepT1b, are expressed at the intestinal level. They translocate charged di/tripeptides with different efficiency, which depends on the position of the charged amino acid in the peptide and the external pH. The relation between the position of the charged amino acid and the capability of transporting the dipeptide was investigated in the zebrafish and Atlantic salmon PepT1-type transporters. Using selected charged (at physiological pH) dipeptides: i.e., the negatively charged Asp-Gly and Gly-Asp, and the positively charged Lys-Gly and Gly-Lys and Lys-Met and Met-Lys, transport currents and kinetic parameters were collected. The neutral dipeptide Gly-Gln was used as a reference substrate. Atlantic salmon PepT1a and PepT1b transport currents were similar in the presence of Asp-Gly and Gly-Asp, while zebrafish PepT1a elicited currents strongly dependent on the position of Asp in the dipeptide and zebrafish PepT1b elicited small transport currents. For Lys- and Met-containing dipeptides smaller currents compared to Gly-Gln were observed in PepT1a-type transporters. In general, for zebrafish PepT1a the currents elicited by all tested substrates slightly increased with membrane potential and pH. For Atlantic salmon PepT1a, the transport current increased with negative potential but only in the presence of Met-containing dipeptides and in a pH-dependent way. Conversely, large currents were shown for PepT1b for all tested substrates but Gly-Lys in Atlantic salmon. This shows that in Atlantic salmon PepT1b for Lys-containing substrates the position of the charged dipeptides carrying the Lys residue defines the current amplitudes, with larger currents observed for Lys in the N-terminal position. Our results add information on the ability of PepT1 to transport charged amino acids and show species-specificity in the kinetic behavior of PepT1-type proteins. They also suggest the importance of the proximity of the substrate binding site of residues such as LysPepT1a/GlnPepT1b for recognition and specificity of the charged dipeptide and point out the role of the comparative approach that exploits the natural protein variants to understand the structure and functions of membrane transporters.

4.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984903

RESUMO

Monitoring of ions in real-time directly in cell culture systems and in organ-on-a-chip platforms represents a significant investigation tool to understand ion regulation and distribution in the body and ions' involvement in biological mechanisms and specific pathologies. Innovative flexible sensors coupling electrochemical stripping analysis (square wave anodic stripping voltammetry, SWASV) with an ion selective membrane (ISM) were developed and integrated in Transwell™ cell culture systems to investigate the transport of zinc and copper ions across a human intestinal Caco-2 cell monolayer. The fabricated ion-selective sensors demonstrated good sensitivity (1 × 10-11 M ion concentration) and low detection limits, consistent with pathophysiological cellular concentration ranges. A non-invasive electrochemical impedance spectroscopy (EIS) analysis, in situ, across a selected spectrum of frequencies (10-105 Hz), and an equivalent circuit fitting were employed to obtain useful electrical parameters for cellular barrier integrity monitoring. Transepithelial electrical resistance (TEER) data and immunofluorescent images were used to validate the intestinal epithelial integrity and the permeability enhancer effect of ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) treatment. The proposed devices represent a real prospective tool for monitoring cellular and molecular events and for studies on gut metabolism/permeability. They will enable a rapid integration of these sensors into gut-on-chip systems.

5.
Int J Mol Sci ; 23(21)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361959

RESUMO

SLC15A4/PHT1 is an endolysosome-resident carrier of oligopeptides and histidine recently come into view as a key path marker of immune/autoimmune/inflammatory pathways in immune cells. Yet, its emerging role in inflammatory processes directly targeting the gastrointestinal epithelial layer, as in the multifactorial pathophysiology of inflammatory bowel disease (IBD), is poorly investigated. Here, the first identification of SLC15A4/PHT1 gene products in human colonic epithelium of ulcerative colitis (UC) patients is reported, showing protein primarily localized in intracellular vesicle-like compartments. Qualitative and quantitative immunohistochemical analyses of colon biopsies revealed overexpression of SLC15A4/PHT1 protein product in the epithelial layer of UC patients. Results were successfully mirrored in vitro, in spontaneously differentiated enterocyte-like monolayers of Caco-2 cells specifically exposed to DSS (dextran sodium sulphate) to mimic IBD inflammatory onsets. SLC15A4/PHT1 expression and cellular localization were characterized confirming its (dys)regulation traits in inflamed vs. healthy epithelia, strongly hinting the hypothesis of SLC15A4/PHT1 increased function associated with epithelial inflammation in IBD patients.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Proteínas de Membrana Transportadoras , Humanos , Células CACO-2 , Colite/patologia , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Regulação para Cima
6.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297375

RESUMO

Osteoarthritis (OA) is a joint disease characterized by inflammation of the synovium, angiogenesis, cartilage degradation, and osteophyte formation. Harpagophytum Procumbens DC. ex Meisn., Boswellia Serrata Roxb., Curcuma longa L., Bromelain and Escin (Aesculus hippocastanum) are plants which extracts, together to Bromelain and Escin (Aesculus hippocastanum) are traditionally used in OA. However, their mechanistic role remains unclear. We aimed to investigate whether these bioactives alone or in combination (as in Flonat Fast®) can suppress TNF-α-induced inflammation, angiogenesis, and osteophyte formation using two cell models involved in OA: endothelial cells and monocytes. Each plant extract was evaluated for its polyphenol content, antioxidant activity, and toxicity. In endothelial cells and monocytes, expression of genes involved in OA was assessed, functional assays for inflammation and angiogenesis were performed, and impairment of reactive oxygen species production (ROS) was evaluated. Exposure of cells to the bioactives alone and in combination before cytokine stimulation resulted in differential counterregulation of several gene and protein expressions, including those for cyclooxygenases-2, metalloproteinase-9, transforming growth factor ß1, and bone morphogenic protein-2. We demonstrated that these bioactives modulated monocyte adhesion to endothelial cells as well as cell migration and endothelial angiogenesis. Consistent with radical scavenging activity in the cell-free system, the bioactives curbed TNF-α-stimulated intracellular ROS production. We confirmed the potential anti-inflammatory and antiangiogenic effects of the combination of Harpagophytum procumbens, Boswellia, Curcuma, Bromelain, and Escin and provided new mechanistic evidence for their use in OA. However, further clinical studies are needed to evaluate the true clinical utility of these bioactives as supportive, preventive, and therapeutic agents.

7.
Inflammation ; 45(6): 2477-2497, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35732858

RESUMO

Winnie, a mouse carrying a missense mutation in the MUC2 mucin gene, is a valuable model for inflammatory bowel disease (IBD) with signs and symptoms that have multiple similarities with those observed in patients with ulcerative colitis. MUC2 mucin is present in Winnie, but is not firmly compacted in a tight inner layer. Indeed, these mice develop chronic intestinal inflammation due to the primary epithelial defect with signs of mucosal damage, including thickening of muscle and mucosal layers, goblet cell loss, increased intestinal permeability, enhanced susceptibility to luminal inflammation-inducing toxins, and alteration of innervation in the distal colon. In this study, we show that the intestinal environment of the Winnie mouse, genetically determined by MUC2 mutation, selects an intestinal microbial community characterized by specific pro-inflammatory, genotoxic, and metabolic features that could imply a direct involvement in the pathogenesis of chronic intestinal inflammation. We report results obtained by using a variety of in vitro approaches for fecal microbiota functional characterization. These approaches include Caco-2 cell cultures and Caco-2/THP-1 cell co-culture models for evaluation of geno-cytotoxic and pro-inflammatory properties using a panel of 43 marker RNAs assayed by RT-qPCR, and cell-based phenotypic testing for metabolic profiling of the intestinal microbial communities by Biolog EcoPlates. While adding a further step towards understanding the etiopathogenetic mechanisms underlying IBD, the results of this study provide a reliable method for phenotyping gut microbial communities, which can complement their structural characterization by providing novel functional information.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Camundongos , Animais , Roedores , Células CACO-2 , Mucosa Intestinal/metabolismo , Colite/patologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucinas/metabolismo , Doença Crônica , Dano ao DNA , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
8.
Curr Res Physiol ; 5: 193-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434651

RESUMO

The reduced availability of dissolved oxygen is a common stressor in aquatic habitats that affects the ability of the heart to ensure tissue oxygen supply. Among key signalling molecules activated during cardiac hypoxic stress, nitric oxide (NO) has emerged as a central player involved in the related adaptive responses. Here, we outline the role of the nitrergic control in modulating tolerance and adaptation of teleost heart to hypoxia, as well as major molecular players that participate in the complex NO network. The purpose is to provide a framework in which to depict how the heart deals with limitations in oxygen supply. In this perspective, defining the relational interplay between the multiple (sets of) proteins that, due to the gene duplication events that occurred during the teleost fish evolutive radiation, do operate in parallel with similar functions in the (different) heart (districts) and other body districts under low levels of oxygen supply, represents a next goal of the comparative research in teleost fish cardiac physiology.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35457652

RESUMO

Time spent outdoors and physical activity (PA) promote mental health. To confirm this relationship in the aftermath of COVID-19 lockdowns, we explored individual levels of anxiety, depression, stress and subjective well-being (SWB) in a cohort of academic students and staff members and tested their association with sport practice, PA at leisure time and time spent outdoors. Our cross-sectional study collected data during the COVID-19 outbreak (April−May 2021) on 939 students and on 238 employees, who completed an online survey on sociodemographic and lifestyle features, depression, anxiety, stress, and SWB. Results showed that the students exhibited higher levels of anxiety, depression, and stress, and lower levels of SWB (p < 0.001 for all domains) compared to the staff members. Correlation analysis confirmed that PA and time spent in nature were associated to high mental health scores among staff and, more consistently, among students. Finally, mediation analyses indicated that the time spent in nature, social relationships, and levels of energy play a mediator role in the relationship between sport practice and SWB. Our evidence reinforces the protective role of time spent in nature in improving mental health, and provides support for policymakers to make appropriate choices for a better management of COVID-19 pandemic consequences.


Assuntos
COVID-19 , Ansiedade/epidemiologia , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Estudos Transversais , Depressão/epidemiologia , Exercício Físico , Humanos , Atividades de Lazer , Pandemias , SARS-CoV-2 , Estudantes/psicologia , Universidades
10.
J Physiol ; 600(10): 2377-2400, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413133

RESUMO

The high-affinity/low-capacity system Slc15a2 (PepT2) is responsible for the reuptake of di/tripeptides from the renal proximal tubule, but it also operates in many other tissues and organs. Information regarding PepT2 in teleost fish is limited and, to date, functional data are available from the zebrafish (Danio rerio) only. Here, we report the identification of two slc15a2 genes in the Atlantic salmon (Salmo salar) genome, namely slc15a2a and slc15a2b. The two encoded PepT2 proteins share 87% identity and resemble both structurally and functionally the canonical vertebrate PepT2 system. The mRNA tissue distribution analyses reveal a widespread distribution of slc15a2a transcripts, being more abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and the distal part of the gastrointestinal tract. The function of the two transporters was investigated by heterologous expression in Xenopus laevis oocytes and two-electrode voltage-clamp recordings of transport and presteady-state currents. Both PepT2a and PepT2b in the presence of Gly-Gln elicit pH-dependent and Na+ independent inward currents. The biophysical and kinetic analysis of the recorded currents defined the transport properties, confirming that the two Atlantic salmon PepT2 proteins behave as high-affinity/low-capacity transporters. The recent structures and the previous kinetic schemes of rat and human PepT2 qualitatively account for the characteristics of the two Atlantic salmon proteins. This study is the first to report on the functional expression of two PepT2-type transporters that operate in the same vertebrate organism as a result of (a) gene duplication process(es). KEY POINTS: Two slc15a2-type genes, slc15a2a and slc15a2b coding for PepT2-type peptide transporters were found in the Atlantic salmon. slc15a2a transcripts, widely distributed in the fish tissues, are abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and distal gastrointestinal tract. Amino acids involved in vertebrate Slc15 transport function are conserved in PepT2a and PepT2b proteins. Detailed kinetic analysis indicates that both PepT2a and PepT2b operate as high-affinity transporters. The kinetic schemes and structures proposed for the mammalian models of PepT2 are suitable to explain the function of the two Atlantic salmon transporters.


Assuntos
Salmo salar , Simportadores , Animais , Cinética , Mamíferos/metabolismo , Oócitos/metabolismo , Ratos , Salmo salar/genética , Salmo salar/metabolismo , Simportadores/genética , Simportadores/metabolismo , Peixe-Zebra/genética
11.
Antioxidants (Basel) ; 11(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453449

RESUMO

Alamandine is a peptide of the Renin Angiotensin System (RAS), either generated from Angiotensin A via the Angiotensin Converting Enzyme 2 (ACE2), or directly from Ang-(1-7). In mammals, it elicits cardioprotection via Mas-related G-protein-coupled receptor D (MrgD), and the NOS/NO system. In teleost fish, RAS is known to modulate heart performance. However, no information is available on the presence of a cardioactive ACE2/Alamandine axis. To fill this gap, we used the cyprinid teleost Carassius auratus (goldfish) for in silico and in vitro analyses. Via the NCBI Blast P suite we found that in cyprinids ace2 is phylogenetically detectable in a subcluster of proteins including ace2-like isoforms, and is correlated with a hypoxia-dependent pathway. By real-time PCR, Western Blotting, and HPLC, ACE2 and Alamandine were identified in goldfish heart and plasma, respectively. Both increased after chronic exposure to low O2 (2.6 mg O2 L-1). By using an ex-vivo working goldfish-heart preparation, we observed that in vitro administration of exogenous Alamandine dose-dependently stimulates myocardial contractility starting from 10-11 M. The effect that involved Mas-related receptors and PKA occurred via the NOS/NO system. This was shown by exposing the perfused heart to the NOS inhibitor L-NMMA (10-5 M) that abolished the cardiac effect of Alamandine and was supported by the increased expression of the phosphorylated NOS enzyme in the extract from goldfish heart exposed to 10-10 M Alamandine. Our data are the first to show that an ACE2/Alamandine axis is present in the goldfish C. auratus and, to elicit cardiac modulation, requires the obligatory involvement of the NOS/NO system.

12.
Nutrients ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35334833

RESUMO

Inflammatory bowel disease (IBD) implies the chronic inflammation of the gastrointestinal tract, combined with systemic vascular manifestations. In IBD, the incidence of cardiovascular disease appears to be related to an increase of oxidative stress and endothelial dysfunction. Grape pomace contains high levels of anti-oxidant polyphenols that are able to counteract chronic inflammatory symptoms. The aim of this study was to determine whether grape pomace polyphenolic extract (GPE) was able to mitigate the overwhelming inflammatory response in enterocyte-like cells and to improve vascular function. Intestinal epithelial Caco-2 cells, grown in monolayers or in co-culture with endothelial cells (Caco-2/HMEC-1), were treated with different concentrations of GPE (1, 5, 10 µg/mL gallic acid equivalents) for 2 h and then stimulated with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α for 16 h. Through multiple assays, the expression of intestinal and endothelial inflammatory mediators, intracellular reactive oxygen species (ROS) levels and NF-κB activation, as well as endothelial-leukocyte adhesion, were evaluated. The results showed that GPE supplementation prevented, in a concentration-dependent manner, the intestinal expression and release of interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and matrix metalloproteinases (MMP)-9 and MMP-2. In Caco-2 cells, GPE also suppressed the gene expression of several pro-inflammatory markers, such as IL-1ß, TNF-α, macrophage colony-stimulating factor (M-CSF), C-X-C motif ligand (CXCL)-10, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and cyclooxygenase (COX)-2. The GPE anti-inflammatory effect was mediated by the inhibition of NF-κB activity and reduced intracellular ROS levels. Furthermore, transepithelial GPE suppressed the endothelial expression of IL-6, MCP-1, VCAM-1, and ICAM-1 and the subsequent adhesion of leukocytes to the endothelial cells under pro-inflammatory conditions. In conclusion, our findings suggest grape pomace as a natural source of polyphenols with multiple health-promoting properties that could contribute to the mitigation of gut chronic inflammatory diseases and improve vascular endothelial function.


Assuntos
Células Endoteliais , Vitis , Células CACO-2 , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Extratos Vegetais/farmacologia
13.
Biology (Basel) ; 12(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36671729

RESUMO

The dis(re)organization of the cytoskeletal actin in enterocytes mediates epithelial barrier dys(re)function, playing a key role in modulating epithelial monolayer's integrity and remodeling under transition from physiological to pathological states. Here, by fluorescence-based morphological and morphometric analyses, we detected differential responses of cytoskeletal actin in intestinal epithelial Caco-2 cell monolayers at two different stages of their spontaneous differentiation, i.e., undifferentiated cells at 7 days post-seeding (dps) and differentiated enterocyte-like cells at 21 dps, upon challenge in vitro with the inflammation-mimicking stimulus of phorbol-12-myristate-13-acetate (PMA). In addition, specific responses were found in the presence of the natural dipeptide carnosine detecting its potential counteraction against PMA-induced cytoskeletal alterations and remodeling in differentiated Caco-2 monolayers. In such an experimental context, by both immunocytochemistry and Western blot assays in Caco-2 monolayers, we identified the expression of the allograft inflammatory factor 1 (AIF-1) as protein functionally related to both inflammatory and cytoskeletal pathways. In 21 dps monolayers, particularly, we detected variations of its intracellular localization associated with the inflammatory stimulus and its mRNA/protein increase associated with the differentiated 21 dps enterocyte-like monolayer compared to the undifferentiated cells.

14.
J Inorg Biochem ; 226: 111660, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801970

RESUMO

Nucleos(t)ide analogues (NA) belong to a family of compounds widely used in anticancer/antiviral treatments. They generally exhibit a cell toxicity limited by cellular uptake levels and the resulting nucleos(t)ides metabolism modifications, interfering with the cell machinery for nucleic acids synthesis. We previously synthesized purine nucleos(t)ide analogues N7-coordinated to a platinum centre with unaltered sugar moieties of the type: [Pt(dien)(N7-dGuo)]2+ (1; dien = diethylenetriamine; dGuo = 2'-deoxy-guanosine), [Pt(dien)(N7-dGMP)] (2; dGMP = 5'-(2'-deoxy)-guanosine monophosphate), and [Pt(dien)(N7-dGTP)]2- (3; dGTP = 5'-(2'-deoxy)-guanosine triphosphate), where the indicated electric charge is calculated at physiological pH (7.4). In this work, we specifically investigated the uptake of these complexes (1-3) at the plasma membrane level. Specific experiments on HeLa cervical cancer cells indicated a relevant cellular uptake of the model platinated deoxynucleos(t)ide 1 and 3 while complex 2 appeared unable to cross the cell plasma membrane. Obtained data buttress an uptake mechanism involving Na+-dependent concentrative transporters localized at the plasma membrane level. Consistently, 1 and 3 showed higher cytotoxicity with respect to complex 2 also suggesting selective possible applications as antiviral/antitumor drugs among the used model compounds.


Assuntos
Membrana Celular/metabolismo , Citotoxinas , Guanosina , Compostos Organoplatínicos , Transporte Biológico , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Guanosina/análogos & derivados , Guanosina/química , Guanosina/farmacocinética , Guanosina/farmacologia , Células HeLa , Humanos , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/farmacologia
15.
Neurochem Res ; 47(1): 111-126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34304372

RESUMO

To the SLC6 family belong 20 human transporters that utilize the sodium electrochemical gradient to move biogenic amines, osmolytes, amino acids and related compounds into cells. They are classified into two functional groups, the Neurotransmitter transporters (NTT) and Nutrient amino acid transporters (NAT). Here we summarize how since their first cloning in 1998, the insect (Lepidopteran) Orthologs of the SLC6 family transporters have represented very important tools for investigating functional-structural relationships, mechanism of transport, ion and pH dependence and substate interaction of the mammalian (and human) counterparts.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Relação Estrutura-Atividade
16.
Nutrients ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34836245

RESUMO

Hydroxytyrosol (HT), a peculiar olive and olive oil phenolic antioxidant, plays a significant role in the endothelial and cardiovascular protection associated with olive oil consumption. However, studies examining the effects of HT on the whole-genome expression of endothelial cells, which are prominent targets for vasculo-protective effects of olive oil polyphenols, have been lacking. This study aims to comprehensively evaluate the genomic effects exerted by HT, at the transcriptional level, in endothelial cells under resting or proinflammatory conditions. Human umbilical vein endothelial cells (HUVECs) were treated with 10 µmol/L HT for 1 h and then stimulated with 5 ng/mL interleukin (IL)-1ß for 3 h. Total RNA was extracted, and gene expression profile assessed with microarray analysis. Functional enrichment analysis and pathway analysis were performed by Ingenuity Pathways Analysis. Microarray data were validated by qRT-PCR. Fixing a significance threshold at 1.5-fold change, HT affected the expression of 708 and 599 genes, respectively, in HUVECs under resting and IL-1ß-stimulated conditions; among these, 190 were common to both conditions. Unfolded protein response (UPR) and endoplasmic reticulum stress resulted from the two top canonical pathways common between HT and HT-IL-1ß affected genes. IL-17F/A signaling was found in the top canonical pathways of HT modified genes under resting unstimulated conditions, whereas cardiac hypertrophy signaling was identified among the pathways affected by HT-IL-1ß. The transcriptomic analysis allowed pinpointing immunological, inflammatory, proliferative, and metabolic-related pathways as the most affected by HT in endothelial cells. It also revealed previously unsuspected genes and related gene pathways affected by HT, thus broadening our knowledge of its biological properties. The unbiased identification of novel genes regulated by HT improves our understanding of mechanisms by which olive oil prevents or attenuates inflammatory diseases and identifies new genes to be enquired as potential contributors to the inter-individual variation in response to functional food consumption.


Assuntos
Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nutrigenômica , Álcool Feniletílico/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ontologia Genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Álcool Feniletílico/farmacologia , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Biomed Opt Express ; 12(10): 6081-6094, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745723

RESUMO

Fiber photometry is widely used in neuroscience labs for in vivo detection of functional fluorescence from optical indicators of neuronal activity with a simple optical fiber. The fiber is commonly placed next to the region of interest to both excite and collect the fluorescence signal. However, the path of both excitation and fluorescence photons is altered by the uneven optical properties of the brain, due to local variation of the refractive index, different cellular types, densities and shapes. Nonetheless, the effect of the local anatomy on the actual shape and extent of the volume of tissue that interfaces with the fiber has received little attention so far. To fill this gap, we measured the size and shape of fiber photometry efficiency field in the primary motor and somatosensory cortex, in the hippocampus and in the striatum of the mouse brain, highlighting how their substructures determine the detected signal and the depth at which photons can be mined. Importantly, we show that the information on the spatial expression of the fluorescent probes alone is not sufficient to account for the contribution of local subregions to the overall collected signal, and it must be combined with the optical properties of the tissue adjacent to the fiber tip.

18.
One Health ; 13: 100352, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841034

RESUMO

In the frames of a One Health strategy, i.e. a strategy should be able to predict susceptibility to infection in both humans and animals, developing a SARS-CoV-2 mutation tracking system is a goal. We observed that the phylogenetic proximity of vertebrate ACE2 receptors does not affect the binding energy for the viral spike protein. However, all viral variants seem to bind ACE2 better in many animals than in humans. Moreover, two observations highlight that the evolution of the virus started at the beginning of 2020 and culminated with the appearance of the variants. First, codon usage analysis shows that the B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants, similar in the use of codons, are also similar to a virus sampled in January 2020. Second, the host-specific D614G mutation becomes prevalent starting from March 2020. Overall, we show that SARS-CoV-2 undergoes a process of molecular evolution that begins with the optimization of codons followed by the functional optimization of the spike protein.

19.
Biomolecules ; 11(10)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680177

RESUMO

Although coffee consumption has been historically associated with negative health outcomes, recent evidence suggests a lower risk of metabolic syndrome, obesity and diabetes among regular coffee drinkers. Among the plethora of minor organic compounds assessed as potential mediators of coffee health benefits, trigonelline and its pyrolysis product N-methylpyridinium (NMP) were preliminary shown to promote glucose uptake and exert anti-adipogenic properties. Against this background, we aimed at characterizing the effects of trigonelline and NMP in inflamed and dysfunctional human adipocytes. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with NMP or, for comparison, trigonelline, for 5 h before stimulation with tumor necrosis factor (TNF)-α. NMP at concentrations as low as 1 µmol/L reduced the stimulated expression of several pro-inflammatory mediators, including C-C Motif chemokine ligand (CCL)-2, C-X-C Motif chemokine ligand (CXCL)-10, and intercellular adhesion Molecule (ICAM)-1, but left the induction of prostaglandin G/H synthase (PTGS)2, interleukin (IL)-1ß, and colony stimulating factor (CSF)1 unaffected. Furthermore, NMP restored the downregulated expression of adiponectin (ADIPOQ). These effects were functionally associated with downregulation of the adhesion of monocytes to inflamed adipocytes. Under the same conditions, NMP also reversed the TNF-α-mediated suppression of insulin-stimulated Ser473 Akt phosphorylation and attenuated the induction of TNF-α-stimulated lipolysis restoring cell fat content. In an attempt to preliminarily explore the underlying mechanisms of its action, we show that NMP restores the expression of the master regulator of adipocyte differentiation peroxisome proliferator-activated receptor (PPAR)γ and downregulates activation of the pro-inflammatory mitogen-activated protein jun N-terminal kinase (JNK). In conclusion, NMP reduces adipose dysfunction in pro-inflammatory activated adipocytes. These data suggest that bioactive NMP in coffee may improve the inflammatory and dysmetabolic milieu associated with obesity.


Assuntos
Adipócitos/metabolismo , Café/metabolismo , Resistência à Insulina/genética , Compostos de Piridínio/farmacologia , Fator de Necrose Tumoral alfa/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Diabetes Mellitus/dietoterapia , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Glucose/metabolismo , Humanos , Inflamação/dietoterapia , Inflamação/genética , Inflamação/metabolismo , Insulina/genética , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos , Obesidade/dietoterapia , Obesidade/genética , Obesidade/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
20.
Br J Pharmacol ; 178 Suppl 1: S412-S513, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529826

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15543. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...